Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 111
Filter
1.
Commun Dis Intell (2018) ; 472023 06 14.
Article in English | MEDLINE | ID: covidwho-20234433
2.
Commun Dis Intell (2018) ; 472023 05 17.
Article in English | MEDLINE | ID: covidwho-20232443
3.
Commun Dis Intell (2018) ; 472023 04 12.
Article in English | MEDLINE | ID: covidwho-2291352
4.
J Biomol Struct Dyn ; : 1-10, 2022 Feb 26.
Article in English | MEDLINE | ID: covidwho-2300506

ABSTRACT

The rapid geographic expansion of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the infectious agent of Coronavirus Disease 2019 (COVID-19) pandemic, poses an immediate need for potent drugs. Enveloped viruses infect the host cell by cellular membrane fusion, a crucial mechanism required for virus replication. The SARS-CoV-2 spike glycoprotein, due to its primary interaction with the human angiotensin-converting enzyme 2 (ACE2) cell-surface receptor, is considered a potential target for drug development. In this study, around 5,800 molecules were virtually screened using molecular docking. Five molecules were selected for in vitro experiments from those that reported docking scores lower than -6 kcal/mol. Imatinib, a Bcr-Abl tyrosine kinase inhibitor, showed maximum antiviral activity in Vero cells. We further investigated the interaction of imatinib, a compound under clinical trials for the treatment of COVID-19, with SARS-CoV-2 RBD, using in silico methods. Molecular dynamics simulations verified that imatinib interacts with RBD residues that are critical for ACE2 binding. This study also provides significant molecular insights on potential repurposable small-molecule drugs and chemical scaffolds for the development of novel drugs targeting the SARS-CoV-2 spike RBD.Communicated by Ramaswamy H. Sarma.

5.
Comput Struct Biotechnol J ; 19: 976-988, 2021.
Article in English | MEDLINE | ID: covidwho-2266096

ABSTRACT

Chemokines are crucial inflammatory mediators needed during an immune response to clear pathogens. However, their excessive release is the main cause of hyperinflammation. In the recent COVID-19 outbreak, chemokines may be the direct cause of acute respiratory disease syndrome, a major complication leading to death in about 40% of severe cases. Several clinical investigations revealed that chemokines are directly involved in the different stages of SARS-CoV-2 infection. Here, we review the role of chemokines and their receptors in COVID-19 pathogenesis to better understand the disease immunopathology which may aid in developing possible therapeutic targets for the infection.

7.
Commun Dis Intell (2018) ; 472023 03 27.
Article in English | MEDLINE | ID: covidwho-2249914
8.
Commun Dis Intell (2018) ; 472023 02 24.
Article in English | MEDLINE | ID: covidwho-2249822
9.
Front Pharmacol ; 14: 1106733, 2023.
Article in English | MEDLINE | ID: covidwho-2248949

ABSTRACT

Acute Respiratory Distress Syndrome (ARDS) is triggered by a variety of insults, such as bacterial and viral infections, including SARS-CoV-2, leading to high mortality. In the murine model of ARDS induced by Staphylococcal enterotoxin-B (SEB), our previous studies showed that while SEB triggered 100% mortality, treatment with Resveratrol (RES) completely prevented such mortality by attenuating inflammation in the lungs. In the current study, we investigated the metabolic profile of SEB-activated immune cells in the lungs following treatment with RES. RES-treated mice had higher expression of miR-100 in the lung mononuclear cells (MNCs), which targeted mTOR, leading to its decreased expression. Also, Single-cell RNA-seq (scRNA seq) unveiled the decreased expression of mTOR in a variety of immune cells in the lungs. There was also an increase in glycolytic and mitochondrial respiration in the cells from SEB + VEH group in comparison with SEB + RES group. Together these data suggested that RES alters the metabolic reprogramming of SEB-activated immune cells, through suppression of mTOR activation and its down- and upstream effects on energy metabolism. Also, miR-100 could serve as novel potential therapeutic molecule in the amelioration of ARDS.

10.
Commun Dis Intell (2018) ; 472023 01 31.
Article in English | MEDLINE | ID: covidwho-2240526
11.
Front Cardiovasc Med ; 9: 1054690, 2022.
Article in English | MEDLINE | ID: covidwho-2227642

ABSTRACT

As 2023 approaches, the COVID-19 pandemic has killed millions. While vaccines have been a crucial intervention, only a few effective medications exist for prevention and treatment of COVID-19 in breakthrough cases or in unvaccinated or immunocompromised patients. SARS-CoV-2 displays early and unusual features of micro-thrombosis and immune dysregulation that target endothelial beds of the lungs, skin, and other organs. Notably, anticoagulation improves outcomes in some COVID-19 patients. The protein transforming growth factor-beta (TGF-ß1) has constitutive roles in maintaining a healthy microvasculature through its roles in regulating inflammation, clotting, and wound healing. However, after infection (including viral infection) TGF-ß1 activation may augment coagulation, cause immune dysregulation, and direct a path toward tissue fibrosis. Dysregulation of TGF-ß signaling in immune cells and its localization in areas of microvascular injury are now well-described in COVID-19, and such events may contribute to the acute respiratory distress syndrome and skin micro-thrombosis outcomes frequently seen in severe COVID-19. The high concentration of TGF-ß in platelets and in other cells within microvascular thrombi, its ability to activate the clotting cascade and dysregulate immune pathways, and its pro-fibrotic properties all contribute to a unique milieu in the COVID-19 microvasculature. This unique environment allows for propagation of microvascular clotting and immune dysregulation. In this review we summarize the physiological functions of TGF-ß and detail the evidence for its effects on the microvasculature in COVID-19. In addition, we explore the potential role of existing TGF-ß inhibitors for the prevention and treatment of COVID-19 associated microvascular thrombosis and immune dysregulation.

12.
Diabetes Res Clin Pract ; 197: 110565, 2023 Mar.
Article in English | MEDLINE | ID: covidwho-2220619

ABSTRACT

Recent studies suggest that extracellular vesicles (EVs) play a role in the pathogenesis of SARS-CoV-2 infection and the severity of COVID-19. However, their role in the interaction between COVID-19 and type 2 diabetes (T2D) has not been addressed. Here, we characterized the circulating EV proteomic and phosphoproteomic landscape in patients with and without T2D hospitalized with COVID-19 or non-COVID-19 acute respiratory illness (RSP). We detected differentially expressed protein and phosphoprotein signatures that effectively characterized the study groups. The trio of immunomodulatory and coagulation proteins C1QA, C1QB, and C1QC appeared to be a central cluster in both the COVID-19 and T2D functional networks. PKCß appeared to be retained in cells by being diverted from EV pathways and contribute to the COVID-19 and T2D interaction via a PKC/BTK/TEC axis. EV-shuttled CASP3 and ROCK1 appeared to be coregulated and likely contribute to disease interactions in patients with COVID-19 and T2D. Predicted activation of AMPK, MAPK, and SYK appeared to also play important roles driving disease interaction. These results suggest that activated cellular kinases (i.e., PKC, AMPK, MAPK, and SYK) and multiple EV-shuttled kinases (i.e., PKCß, BTK, TEC, MAP2K2, and ROCK1) may play key roles in severe COVID-19, particularly in patients with comorbid diabetes.


Subject(s)
COVID-19 , Diabetes Mellitus, Type 2 , Extracellular Vesicles , Humans , COVID-19/metabolism , Diabetes Mellitus, Type 2/pathology , SARS-CoV-2 , Proteomics , AMP-Activated Protein Kinases/metabolism , Extracellular Vesicles/metabolism , rho-Associated Kinases/metabolism
13.
Emerg Infect Dis ; 28(13): S93-S104, 2022 12.
Article in English | MEDLINE | ID: covidwho-2215164

ABSTRACT

We used publicly available data to describe epidemiology, genomic surveillance, and public health and social measures from the first 3 COVID-19 pandemic waves in southern Africa during April 6, 2020-September 19, 2021. South Africa detected regional waves on average 7.2 weeks before other countries. Average testing volume 244 tests/million/day) increased across waves and was highest in upper-middle-income countries. Across the 3 waves, average reported regional incidence increased (17.4, 51.9, 123.3 cases/1 million population/day), as did positivity of diagnostic tests (8.8%, 12.2%, 14.5%); mortality (0.3, 1.5, 2.7 deaths/1 million populaiton/day); and case-fatality ratios (1.9%, 2.1%, 2.5%). Beta variant (B.1.351) drove the second wave and Delta (B.1.617.2) the third. Stringent implementation of safety measures declined across waves. As of September 19, 2021, completed vaccination coverage remained low (8.1% of total population). Our findings highlight opportunities for strengthening surveillance, health systems, and access to realistically available therapeutics, and scaling up risk-based vaccination.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , COVID-19/epidemiology , Pandemics , Incidence
14.
Commun Dis Intell (2018) ; 462022 12 19.
Article in English | MEDLINE | ID: covidwho-2206060
15.
Commun Dis Intell (2018) ; 462022 Nov 30.
Article in English | MEDLINE | ID: covidwho-2146440
16.
Commun Dis Intell (2018) ; 462022 Oct 25.
Article in English | MEDLINE | ID: covidwho-2091648
17.
Commun Dis Intell (2018) ; 462022 Sep 19.
Article in English | MEDLINE | ID: covidwho-2040677
18.
J Med Virol ; 94(12): 6111-6115, 2022 Dec.
Article in English | MEDLINE | ID: covidwho-1990499

ABSTRACT

Human adenoviruses (HAdVs) can cause acute respiratory diseases (ARDs) worldwide, and HAdV-55 is a reemergent pathogen in recent years. In the study, we investigated an outbreak of ARD at a school due to HAdV-55 in Beijing, China, during the early outbreak of coronavirus disease 2019 (COVID-19). The epidemic prevention team was dispatched to the school to collect epidemiologic data and nasopharyngeal samples. Then, real-time reverse transcription polymerase chain reaction (PCR) and multiplex PCR assays were used to detect severe acute respiratory syndrome coronavirus 2 and other respiratory pathogens, respectively. One representative HAdV-55 isolate was selected and submitted for whole-genome sequencing using a MiSeq system and the whole-genome phylogenetic tree was conducted based on the maximum likelihood method. The outbreak lasted from January 27 to February 6, 2020, and 108 students developed fever, among whom 60 (55.56%) cases were diagnosed with HAdV-55 infection in the laboratory using real-time PCR and 56 cases were hospitalized. All the confirmed cases had a fever and 11 cases (18.33%) presented with a fever above 39°C. Other main clinical symptoms included sore throat (43.33%) and headache (43.33%). We obtained and assembled the full genome of one isolate, BJ-446, with 34 761 nucleotides in length. HAdV-55 isolate BJ-446 was 99.85% identical to strain QS-DLL, which was the first HAdV-55 strain in China isolated from an ARD outbreak in Shanxi in 2006. One and four amino acid mutations were observed in the hexon gene and the coding region of L2 pV 40.1 kDa protein, respectively. We identified the first HAdV-55 infection associated with the ARD outbreak in Beijing since the emergence of COVID-19. The study suggests that improved surveillance of HAdV is needed, although COVID-19 is still prevalent in the world.


Subject(s)
Adenovirus Infections, Human , Adenoviruses, Human , COVID-19 , Respiratory Tract Infections , Adenovirus Infections, Human/epidemiology , Amino Acids , Beijing/epidemiology , COVID-19/epidemiology , China/epidemiology , Disease Outbreaks , Fever/epidemiology , Humans , Nucleotides , Phylogeny , Respiratory Tract Infections/epidemiology
19.
Commun Dis Intell (2018) ; 462022 08 01.
Article in English | MEDLINE | ID: covidwho-1975827
20.
Commun Dis Intell (2018) ; 462022 07 05.
Article in English | MEDLINE | ID: covidwho-1924978
SELECTION OF CITATIONS
SEARCH DETAIL